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A novel technique has been developed for the determination of Kirkwood—Buff
integrals by employing ultrasonic velocity and density only. To the best of our
knowledge, there exists no method for the computation of Kirkwood—Buff
integrals from ultrasonic velocity and density only for multicomponent
liquid mixtures. In this context, K-B integrals have been determined for three
ternary mixtures, namely, benzene + cyclohexane + chlorobenzene, benzene +
cyclohexane + toluene and toluene + cyclohexane + carbontetrachloride under
one atmospheric pressure and 298.15K by employing a statistical mechanical
theory propagated by Arakawa and O. Kiyohara, [Arakawa and O. Kiyohara,
Bull. Chem. Soc. Jpn. 43, 975 (1970)].

Keywords: Kirkwood-Buff integrals; multicomponent; ultrasonic velocity;
density

1. Introduction

Measurement of ultrasonic velocity in both liquid and gases can be carried out with a high
degree of precision and the data can be correlated to other thermodynamic parameters of
liquid mixtures through a set of differential equations. Determination of thermodynamic
parameters via this pathway proves to be an attractive one owing to the high precision,
accuracy and accessibility of the measurements carried out thereof. A recent increase in the
interest of Kirkwood-Buff (K-B) solution theory [1-4] has prompted us to develop a novel
technique to determine the K-B integrals using sound speed and density data only.
The solution theory of Kirkwood-Buff [5] describes thermodynamic properties of a
solution in the entire concentration range, using values of G,z defined by

Gop = fo (gup(R) — Ddmr? dr. (1)

These are called the K—B integrals, which are related to thermodynamic quantities such
as chemical potential, partial molar volumes and isothermal compressibility. Here, gq,s(R)
is the angle averaged pair correlation function and the integral extends over the entire
range of intermolecular distances between the pair of molecules of species @ and B. It is
important to note that as the function, g,s(R) reflects the solution structure on the
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microscopic level, G,pg values will contain some information about this structure. Also,
since the quantities g,4(R) cannot be easily measured, the G,4’s if calculated can provide
valuable insight to the structure and interactions of liquid mixtures [6].

Mayjority of the papers devoted to K—B parameters containing non-electrolyte solutions
concern binary mixtures [6—10], work on ternary [11] and multicomponent mixtures is
presently scarce. The pioneering work in this field has been recently carried out by
Matteoli and Mansoori [8—10]. It appears from literature that sound speed has not been
used for the study of the K—B integrals in ternary systems. Direct calculation of these
quantities from sound speed and density data for ternary liquid systems form the basis of
this article. This has been accomplished by incorporating a statistical mechanical theory
advanced by Arakawa and Kiyobara [12] and some curve fitting techniques to make
the calculations at atmospheric pressure and at 298.15K. For this purpose, three
ternary mixtures have been selected, namely, benzene + cyclohexane + chlorobenzene,
benzene + cyclohexane + toluene and toluene + cyclohexane + carbontetrachloride.

2. Theoretical

The G,p values for the ternary mixtures under investigation are related to the
thermodynamic quantities by the following equations [1]

Ll A% Sy
P pappdet(4)  pp
V?Laﬂ L:,L/ﬂ
AP = —F . 2
RT + RT«k 2)

In these expressions, det(4) is the determinant of the matrix A with the elements 4,, A% is
the cofactor of the element A, 845 is the Kronecker § function; p,=N,/V, where
V= Zizl N,V is the volume of the system, N, is the number of moles, V, is the partial
molar volume of the components; and « is the isothermal compressibility factor. The pqg
values are defined as,

O
Maﬂ = <8N > s (3)
B/ T,P,Npso
e 18 the chemical potential of the « component,
fo = 1o+ RTIN Yo Xy 4)

Thus, the evaluation of the K—B parameters entails the experimental values of Vg, i.e. the
partial molar volumes, number densities and the derivatives of the chemical potential
(e /ONg) 7, p,- In order to calculate these interaction parameters directly using sound
speed and density data, the statistical mechanical theory of Arakawa [12—15] was used to
calculate the excess functions for ternary systems.

For the partial molar volumes, equation of the following type is generally used to
which the VZ data can be fitted. Here the x; and x, are the mole fractions of the first and
second components, respectively.

VE = x13[A12 + Bia(x1 — x2)] + x2x3[ 423 + Br3(x2 — x3)]
+ x1x3[A413 + Bi3(x1 — x3)] + x1x2x3C23. ®)
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However, we can assume our mixtures to be regular [15] and can write
VE = x1x234 + x2x3B + x1x3C + x1x2x3D. (6)

The coefficients of the above equation are obtained by the least square method. A similar
equation was fitted to the excess Gibbs’s free energy values.

VE can be written in terms of molar volume of pure components Vj# etc. and partial
molar volume Vg, (AV,_V, — V*) etc., considering x; and x, to be the two independent
variables:

VE:X|AV1+X2AV2~I-(1—X1 —XQ)AV3. (7)

Differentiating w.r.t x; and x, we get the following equations

vE

— = AV — AV3,

8X]

vE

— = AV, — AVs. (3)
3X2

Substituting for AV} and AV, in Equation (7), AV; can be obtained leading us to the
partial molar volumes. Substituting the values of the partial molar volumes we can obtain
the number density from

3
p= Z Pa> )
a=1

> paVu=1. (10)

The chemical potentials and their various derivatives involved in the calculations have
been evaluated using excess Gibbs free energy values [13,14].

uf =RTlny, and Gf= RTZ ng In yy. (11)
Here we get
GE
Ay =——4+ Aps + RTInx; — RTIn x3 (12)
N&)xz
and
E
A,bL] = + AM3 + RT]H)C] — RTIn X3. (13)
N8x1

The Aus can be evaluated using

G"_xi 36" | 2068
N o Naxl N BX2

4+ Aups — RT1n x3, (14)

also

B _w e _0p G 0Am
ax, ax; ~ 0x x5 9x3 oxy

(15)
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All the quantities calculated from the above procedure have been substituted in
Equation (2) and after some intricate calculations; we obtained the K—B parameters.

3. Results and discussion

Ultrasonic  speed and density data for the ternary systems benze-
ne + cyclohexane + chlorobenzene D, benzene + cyclohexane + toluene(II) and
toluene 4 cyclohexane + carbontetrachloride(III) have been taken from various [11,12]
sources. The excess enthalpies and entropies have been calculated through the Arakawa’s
statistical mechanical theory for the same [11,12] and the free energy values (E — TS%) are
used here to obtain the chemical potential derivatives. The data of pure components are
given in Table 1. The calculated values of the K—B parameters are represented graphically
and recorded in Tables 2-4.

Table 1. Molecular parameters of pure liquids at 298.15 K.

Components Molecular weight u (ms™h p(gec™h
Toluene 92.14 1304.3 0.8626
Cyclohexane 84.16 1252.0 0.7736
Carbontetrachloride 153.82 926.0 1.5851
Benzene 78.14 1295.3 0.8736
Chlorobenzene 113.64 1268.0 1.0080

Table 2. Kirkwood—Buff parameters for ternary liquid mixture: benzene
(x1) + cyclohexane (x;) + chlorobenzene at 298.15 K.

X1 X2 u(ms') p(gec™) G G2 Gi3

0.071 0.424 1247 0.94 —742.77 —204.01 —176.36
0.072 0.231 1255 1.01 —1869.06 —606.82 —167.93
0.072 0.525 1244 0.91 —5347.06 —317.75 —447.69
0.077 0.619 1243 0.87 —1890.29 —180.75 —383.34
0.083 0.804 1246 0.81 —2819.84 —148.21 —1480.98
0.165 0.327 1252 0.95 —556.40 —283.69 —187.70
0.167 0.718 1246 0.82 —931.06 —160.11 —1337.83
0.288 0.228 1258 0.96 —500.73 —777.98 —301.55
0.293 0.599 1248 0.83 —34.46 —116.94 584.64
0.390 0.130 1266 0.97 —232.93 —556.47 —183.17
0.392 0.313 1256 0.90 —236.41 —294.87 —305.41
0.399 0.402 1253 0.87 —181.50 —199.94 —268.78
0.482 0.048 1274 0.98 —195.20 —1587.15 —197.56
0.488 0.132 1268 0.95 —160.53 —286.66 —174.31
0.496 0.400 1256 0.85 —108.98 —170.06 456.38
0.584 0.135 1271 0.92 —180.79 —-915.05 —414.97
0.586 0.223 1266 0.89 —143.56 —351.49 —338.14
0.677 0.046 1280 0.94 —135.84 —1738.04 —323.62
0.683 0.120 1275 0.91 —145.51 —-902.03 —552.93
0.685 0.220 1269 0.87 —132.64 —407.85 —779.25

0.852 0.051 1287 0.89 —103.00 —1393.55 —694.53
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Table 3. Kirkwood—Buff
(x1) +cyclohexane (x;) + toluene at 298.15K.

parameters

for ternary liquid mixture: benzene

X X5 u(ms™') p(gec™) G Gy G33

0.133 0.212 1291 0.84 —942.04 —724.87 —174.44
0.164 0.230 1269 0.84 —581.40 —368.05 —165.10
0.185 0.246 1268 0.84 —493.44 —326.96 —173.52
0.230 0.283 1268 0.84 —365.90 —266.84 —198.50
0.297 0.334 2165 0.83 —342.51 —304.93 —277.25
0.339 0.374 1259 0.83 —330.94 —298.44 —360.60
0.361 0.391 1265 0.83 —237.20 —222.74 —398.67
0.382 0.409 1265 0.83 760.44 562.05 -304.70
0.405 0.418 1272 0.82 —176.57 —182.86 —555.66
0.444 0.436 1278 0.82 —102.14 —129.07 —828.46
0.465 0.422 1254 0.83 —30.53 —55.07 —690.73
0.507 0.362 1260 0.83 —165.88 -217.55 —593.94
0.527 0.343 1265 0.83 —198.80 -317.20 —864.40
0.578 0.297 1273 0.84 —180.78 —389.24 —1070.26
0.604 0.268 1286 0.84 —157.21 —337.04 —638.99
0.624 0.246 1295 0.84 —153.29 —372.25 —649.28
0.643 0.230 1284 0.84 —147.88 —385.37 —597.51
0.662 0.212 1280 0.85 —137.82 —-206.42 382.77
0.680 0.194 1254 0.85 —141.83 —620.06 —1311.66
0.697 0.176 1258 0.85 —136.73 —481.13 —515.60
0.704 0.165 1268 0.85 —133.54 —944.05 —1957.90
Table 4. Kirkwood—Buff parameters for ternary liquid mixture: toluene

(x1) + cyclohexane (x;) + carbontetrachloride at 298.15 K.

X x> u (ms™) p(gec™) Gy G2 Gi3

0.113 0.204 984 1.32 —839.06 —455.90 —150.37
0.127 0.224 998 1.28 —710.41 —406.62 —164.58
0.154 0.300 1021 1.21 —729.09 —350.55 —179.22
0.173 0.263 1094 1.22 —618.82 —397.96 —176.17
0.191 0.282 1055 1.19 —723.84 —417.32 —154.07
0.213 0.303 1064 1.16 —511.07 —346.55 —205.78
0.232 0.326 1077 1.11 —353.52 —-301.93 —272.43
0.252 0.344 1139 1.09 —381.40 —297.11 —273.72
0.274 0.362 1146 1.06 —363.39 —287.46 —-301.43
0.297 0.386 1157 1.02 —297.24 —267.15 —387.28
0.313 0.408 1168 1.00 —451.43 —274.22 —249 .64
0.336 0.428 1148 0.97 —262.11 —243.83 —551.83
0.357 0.441 1215 0.94 —4.16 —217.49 —1334.25
0.376 0.450 1235 0.92 —318.29 —241.94 —490.47
0.396 0.461 1242 0.90 —304.54 —236.23 —550.89
0.417 0.469 2151 0.88 —267.65 —231.54 —862.94
0.418 0.454 1247 0.90 —307.19 —239.23 —404.09
0.493 0.349 1234 0.92 —207.36 —-310.75 —774.40
0.539 0.296 1180 0.93 —206.71 —354.19 —564.06
0.623 0.230 1176 0.93 —174.86 —441.50 —699.68
0.655 0.194 1169 0.93 —161.65 —589.76 —654.10

291



07:30 28 January 2011

Downl oaded At:

292

(b)
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Figure 1. Kirkwood-Buff parameters for temary liquid mixture benzene (x) 4 cyclohexane (x,) at

298.15K.
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Figure 2. Kirkwood-Buff parameters for temary liquid mixture benzene (x;)+ cyclohexane
(x,) + toluene (x3) at 298.15K.

As evident in Tables 24, the self-interaction depicted by the G,,’s are comparatively
much more negative than the Gup’s in all the systems. The close perusal of the Table 2
indicates that the benzene—benzene interaction (G;;) shown by the system I is found to
have the largest numerical value, around the mole fraction 0.07. Peaks in the G, and G3
curves are found to be near this mole fraction indicating that the benzene-benzene
interaction plays an important role in the G,p calculations. In the system (II)
benzene + cyclohexane 4 toluene, G;; and G,, both show a maxima at x;=0.38,
subsequently a distinct peak is observed in all the G,z graphs near about this mole
fraction. The G,z values are the maximum for this system depicting the interaction
between unlike particles. The peaks in the G,z curves for the system
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Figure 3. Kirkwood-Buff parameters for temary liquid mixture; benzene (x;)+ cyclohexane
(x») 4 carbontetrachloride at 298.15 K.

toluene 4 cyclohexane + carbon tetrachloride (III) are sharply defined around the
concentration x; =0.36.

Ideally in the above calculations the G5 = Gpg,, i.¢. the curves of the parameters should
superimpose. However, although the parameters followed the same general trend
(Figures 1-3) there are certain differences in the curves. The error seems to lie in the
calculations of the chemical potential derivatives and also in the matrix formulation. It is
observed however, that as a function of concentration the K—B parameters show extrema
in the studied concentration range and the turning point in the graphs can be used to
describe the correlation between the pairs of molecules found in the ternary mixtures.
(A ternary mixture may be considered as a combination of three binary systems). The
significance of this work mainly lies in the direct prediction of these parameters using the
ultrasonic speed and density data only.
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